

Journal of Organometallic Chemistry 543 (1997) 229-232

Priority communication

On the reaction of $[Ph_2(OH)Si]_2O$ with t-Bu₂SnCl₂: synthesis and characterization of the first well defined polystannasiloxane $[(t-Bu_2SnO)(Ph_2SiO)_2]_n$

Jens Beckmann^a, Klaus Jurkschat^{a,*}, Dieter Schollmeyer^b, Markus Schürmann^a

^a Lehrstuhl für Anorganische Chemie II der Universität Dortmund, D-44221 Dortmund, Germany ^b Institut für Organische Chemie der Johannes-Gutenberg-Universität, Saarstrasse 21, D-55099 Mainz, Germany

Received 24 March 1997

Abstract

The high yield synthesis of $[(t-Bu_2SnO)(Ph_2SiO)_2]$, 1 is reported. Compound 1 is a linear polymer in the solid state but a six-membered ring in solution. © 1997 Elsevier Science S.A.

Keywords: X-ray diffraction; Silicon; Tin; Synthesis; Polymer

1. Introduction

Metallasiloxanes containing Si–O–M linkages (M = main group elements as well as transition metals) are known for a long time [1,2] and have been reviewed recently [3,4]. Cyclic derivatives have received special attention as they might serve as precursors for well defined polyheterosiloxanes [5,6]. The interest in stannasiloxanes has grown in the last years [7–16] but we are aware of only two reports tentatively describing the synthesis of a polystannasiloxane [17,18].

Recently we have shown that di-tert. butyltinoxide $(t-Bu_2SnO)_3$ reacts with di-tert. butyldichlorosilane t-Bu_2SiCl₂ and tert. butyltrifluorosilane t-BuSiF₃, respectively, to give cyclic six- and eight-membered stannasiloxanes (A) and (B) (Scheme 1) [19]. A six-membered ring of type (C) (R = t-Bu) which is of interest for comparison with (A) and $(t-Bu_2SnO)_3$ was not observed along this reaction.

In an attempt to prepare a representative of a (C)-type structure with R = Ph by reacting easily available $[Ph_2(OH)Si]_2O$ [20] with t-Bu₂SnCl₂ we surprisingly obtained the title compound as the first well defined polystannasiloxane.

* Corresponding author.

0022-328X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(97)00263-5

2. Results and discussion

Compound 1 is obtained in high yield according to Eq. (1). It represents a sharp-melting crystalline solid which is well soluble in common organic solvents such as chloroform, toluene or ethanol.

$$Ph_{2}(OH)Si]_{2}O + t-Bu_{2}SnCl_{2}$$

$$\stackrel{NEt_{3}}{\rightarrow} [(t-Bu_{2}SnO)(Ph_{2}SiO)_{2}]_{n}$$
(1)

The molecular structure of 1 is shown in Fig. 1, selected bond lengths and bond angles are listed in Table 1.

Crystal data and structure solution of 1: $C_{32}H_{38}O_3Si_2Sn$, M = 645.49, triclinic, P-1, a = 11.140(2), b = 12.549(2), c = 13.040(2) Å, $\alpha = 101.319(8)$, $\beta = 106.038(8)$, $\gamma = 105.351(8)^\circ$, V = 1616.5(5) Å³, Z = 2, $D_c = 1.326$ g cm⁻³, $D_m = 1.322(3)$

Fig. 1. View of a part of the polymeric chain of (1) showing 30% probability displacement ellipsoids and the atom numbering (SHELXTL-PLUS) [33]. (Symmetry transformations used to generate equivalent atoms: a = -x, -y + 1, -z + 1; b = -x, -y, -z).

g cm⁻³, λ (Cu K α) = 1.54178 Å, F(000) = 664, T = 296(1) K. Three-dimensional data were collected to a maximum θ of 74° with Cu radiation and a CAD4 diffractometer. The structure was solved by direct methods SIR92 [21] and refined by full-matrix least squares calculations using all measured F² data and SHELXL93 [22]. All non-H-atoms were refined anisotropically. The H atoms were placed in geometrically calculated positions and refined with the common isotropic tempera-

ture factor $[C-H_{aryl} 0.93 \text{ Å}, C-H_{alkyl} 0.96 \text{ Å}, U_{iso} 0.102(3) \text{ Å}^3]$. $R_1 = 0.0390$ for 5893 (I > 2 σ (I)) and w $R_2 = 0.1160$ for 6649 independent reflections. The maximum and minimum residual electron densities were 0.828 and -1.049 e Å⁻³. Full details have been deposited with the Cambridge Crystallographic Data Centre and are also available in CIF format from the author.

In the solid state compound 1 is a linear polymer rather than the expected six-membered ring of type (C,

Table 1 Selected bond lengths (Å), angles (°) and torsion angles (°) for $\mathbf{1}$

$\overline{\mathrm{Sn}(1)}$ -O(2)	1.952(2)	Sn(1)-O(3)	1.958(3)	
Sn(1)-C(1)	2.174(3)	Sn(1)-C(5)	2.177(3)	
Si(1)-O(2)	1.594(3)	Si(1)–O(1)	1.6111(9)	
Si(1)-C(11)	1.861(3)	Si(1) - C(21)	1.864(3)	
Si(2)-O(3)	1.589(3)	Si(2)-O(4)	1.6089(9)	
Si(2)-C(31)	1.866(3)	Si(2)-C(41)	1.870(3)	
O(1)-Si(1a)	1.6111(9)	O(4)–Si(2b)	1.6089(9)	
O(2) - Sn(1) - O(3)	102.17(13)	O(2)-Sn(1)-C(1)	106.26(13)	
O(3) - Sn(1) - C(1)	109.01(14)	O(2) - Sn(1) - C(5)	107.26(14)	
O(3) - Sn(1) - C(5)	104.52(14)	C(1) - Sn(1) - C(5)	125.3(2)	
O(2) - Si(1) - O(1)	110.89(12)	O(2)-Si(1)-C(11)	112.6(2)	
O(1)-Si(1)-C(11)	107.83(13)	O(2) - Si(1) - C(21)	106.7(2)	
O(1) - Si(1) - C(21)	108.77(12)	C(11)-Si(1)-C(21)	109.97(14)	
O(3) - Si(2) - O(4)	110.01(12)	O(3) - Si(2) - C(31)	108.3(2)	
O(4) - Si(2) - C(31)	108.37(12)	O(3)-Si(2)-C(41)	112.0(2)	
O(4) - Si(2) - C(41)	108.90(13)	C(31)-Si(2)-C(41)	109.20(14)	
Si(1) - O(1) - Si(1a)	180.0	Si(1) - O(2) - Sn(1)	158.6(2)	
Si(2) - O(3) - Sn(1)	156.2(2)	Si(2)–O(4)–Si(2b)	180.0	
O(2)-Si(1)-O(1)-Si(1a)	-62(1)	C(11)-Si(1)-O(1)-Si(1a)	61(1)	
C(21)-Si(1)-O(1)-Si(1a)	-179(1)	O(1)-Si(1)-O(2)-Sn(1)	90.8(5)	
C(11)-Si(1)-O(2)-Sn(1)	-30.1(6)	C(21)-Si(1)-O(2)-Sn(1)	- 150.9(5)	
O(3) - Sn(1) - O(2) - Si(1)	75.8(6)	C(1)-Sn(1)-O(2)-Si(1)	-170.0(5)	
C(5)-Sn(1)-O(2)-Si(1)	-33.8(6)	O(4) - Si(2) - O(3) - Sn(1)	88.6(5)	
C(31)-Si(2)-O(3)-Sn(1)	-153.1(5)	C(41)-Si(2)-O(3)-Sn(1)	- 32.7(5)	
O(2)-Sn(1)-O(3)-Si(2)	84.5(5)	C(1)-Sn(1)-O(3)-Si(2)	-27.7(5)	
C(5) - Sn(1) - O(3) - Si(2)	-163.8(5)	O(3) - Si(2) - O(4) - Si(2b)	- 140(2)	
C(31)-Si(2)-O(4)-Si(2b)	102(2)	C(41)-Si(2)-O(4)-Si(2b)	-17(2)	

Symmetry transformations used to generate equivalent atoms: a = -x, -y + 1, -z + 1; b = -x, -y, -z

R = Ph) (Scheme 1). To the best of our knowledge 1 represents the first structurally characterized polymeric stannasiloxane.

The polymer consists of linear O(1)-Si(1)-O(2)-Sn(1)-O(3)-Si(2)-O(4) units in which both the silicon and tin atoms show tetrahedral configurations (mean angles around Si(1) 109.46°, Si(2) 109.46°, Sn(1) 109.09°). However, as a result of the t-butyl groups the geometry around Sn(1) is more distorted as expressed by the large C(1)-Sn(1)-C(5) angle of $125.3(2)^{\circ}$. The Si(1)-O(2)-Sn(1) and Si(2)-O(3)-Sn(1) angles of 158.6(2)° and 156.2(2)°, respectively, are bigger in comparison with the Si-O-Sn angle of 140.0(8)° found for $(Ph_3SnOSiPh_2)_2O$ [8]. This might be attributed to the different substituent pattern at the tin atoms in these two compounds. The Si(1)-O(1)-Si(1a) angle amounts to 180° which is again larger than the Si-O-Si angle of 165.4(10)° determined for (Ph₃SnOSiPh₂)₂O [8]. Si-O-Si angles of 180° have previously been observed for other siloxanes [23-26]. The Si-O (average: 1.600 Å), Sn-O (average: 1.955 Å) and Sn-C (average: 2.175 Å) distances are as expected and comparable to related compounds [8].

In contrast to its polymeric solid state structure 1 is a six-membered ring of type ($\mathbf{C}, \mathbf{R} = \mathbf{Ph}$) in solution. The Field Desorption mass spectrum of a solution of 1 in chloroform exclusively shows a single peak at m/e 646 with the correct isotopic distribution calculated for [(t- Bu_2SnO (Ph₂SiO)₂]. This structure is also confirmed by an osmometric molecular weight determination (20 mg in 2 ml CHCl₃ at 58°C). The ¹¹⁹Sn NMR (CDCl₃) displays a single resonance at -119.5 ppm with ²J(¹¹⁹Sn-O-²⁹Si) 34 Hz and ¹J(¹¹⁹Sn-¹³C) 467 Hz which is considerably high frequency shifted in comparison with its ¹¹⁹Sn MAS resonance at -167.1 ppm indicating different structures in solution and in the solid state. The ²⁹Si NMR spectrum shows a single resonance at -35.9 ppm with unresolved $^{2}J(^{117/119}Sn O^{-29}Si$) of 34 Hz. The chemical shift is in line with those reported for [(PhBO)(Ph₂SiO)₂] (δ - 30.8 ppm) [5] and $(Ph_2SiO)_3$ (δ -33.0 ppm) [5] for which sixmembered ring structures are confirmed by X-ray analysis [5,27]. The six-membered ring structure of 1 is further supported by the small ${}^{2}J({}^{119}Sn-O-{}^{29}Si)$ coupling of 34 Hz which indicates a small Sn-O-Si angle. Geminal ²J(¹¹⁹Sn-X) couplings are known to be very sensitive to changes of the bond angle [28,29].

As was pointed out for $[(PhBO)(Ph_2SiO)_2]$ [5] by Manners et al. a considerable ring strain is also to be expected for 1 in solution. The thermodynamic driving force for the polymerization of 1 upon crystallization might be the relief of this strain. It is also the reason for the almost quantitative formation of $[(t-Bu_2SnO)_2(Ph_2SiO)_2]$ 2 upon reaction of 1 with (t-Bu_2SnO)₃ (Scheme 2).

Although 2 has not been isolated yet its structure in

solution follows unambiguously from ²⁹Si (δ -45.3 ppm, ²J(¹¹⁹Sn-O-²⁹Si) 66 Hz) and ¹¹⁹Sn (δ -125.7 ppm, ²J(¹¹⁹Sn-O-¹¹⁷Sn) 685 Hz, ²J(¹¹⁹Sn-O-²⁹Si) 67 Hz, ¹J(¹¹⁹Sn-¹³C) 506 Hz) NMR spectroscopy. Especially the ²J(¹¹⁹Sn-O-²⁹Si) coupling is very close to the value of 65 Hz found for related [t-Bu₂SnOSiPh₂O]₂ for which a (**B**)-type structure has been confirmed for both solution and solid state [29].

3. Experimental

 $(Ph_2SiOH)_2O$, $(t-Bu_2SnO)_3$ and $t-Bu_2SnCl_2$ were synthesized by literature methods [20,30–32]. The solvents were dried by standard procedures and freshly distilled prior to use. All operations were carried out under an atmosphere of nitrogen.

NMR spectra were recorded in CDCl₃ on a Bruker DRX 400 spectrometer at 400.13 MHz (1H), 100.62 MHz (¹³C), 79.49 MHz (²⁹Si) and 149.21 MHz (¹¹⁹Sn) using Me₄Si and Me₄Sn, respectively, as external references. The ¹¹⁹Sn MAS NMR spectrum was recorded on a Bruker MSL 400 spectrometer by using cross polarization (recycle delay 8.0 s, 90°C pulse 5.0 µs, contact time 3.5 ms) at spinning frequencies of 10 and 14 kHz, respectively. The mass spectra were obtained on a Finnigan MAT 8230 spectrometer. FD method: dipping the emission wire into a solution of some single crystals of 1 in chloroform. EI activation: evaporation of one single crystal at 201°C, ionization potential 70 eV. The IR spectrum was recorded on a Bruker FTIR IFS 113v spectrometer and the Raman spectrum was obtained on a Jobin Yvon T64000 spectrometer (Ar laser, $\nu_{\rm E}$ 514.5 nm). The molecular weight measurement was performed on a Knauer osmometer.

3.1. Synthesis of $[(t-Bu_2SnO)(Ph_2SiO)_2]_n$ (1)

A solution of Bu'_2SnCl_2 (1.52 g, 5.00 mmol) in 30 ml of acetone was added dropwise to a magnetically stirred solution of $(Ph_2SiOH)_2O$ (2.07 g, 5.00 mmol) and triethylamine (1.01 g, 10.0 mmol) in 30 ml of

acetone. A white precipitate of $[HNEt_3]^+Cl^-$ is formed immediately. The precipitate was filtered off and the solvent was evaporated in vacuo. The solid residue was recrystallized from toluene affording 2.71 g (4.19 mmol, 84%) of $[(t-Bu_2SnO)(Ph_2SiO)_2]$, **1** as colourless crystalline solid, mp 238°C.

Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane/hexane solution of **1**.

¹H NMR: δ 1.26 ppm, ³J(¹¹⁹Sn-¹H) 103.2 Hz (s, 18 H, Bu^t), 7.7–7.2 ppm (m, 20 H, Ph). ¹³C NMR: δ 29.4 ppm (C*Me*₃), 40.7 ppm, ¹J(¹¹⁹Sn-¹³C) 465 Hz (*CMe*₃), C_m 127.4, C_p 129.4, C_o 134.3, C_i 137.6 ppm. ²⁹Si NMR: δ -35.9 ppm, ²J(^{119/117}Sn-O-²⁹Si) 34.3 Hz. ¹¹⁹Sn NMR: δ -119.5 ppm, ²J(¹¹⁹Sn-O-²⁹Si) 34.3 Hz. ¹¹⁹Sn NMR: δ -167.1 ppm. MS (m/e): 533 (M-2 Bu^t, 63%), 455 (M-2 Bu^t, -Ph, 100%), 377 (M-2 Bu^t, -2 Ph, 21%), 57 (Bu^t, 59%). IR(Nujol): 2962, 2920, 1463, 1378, 1118, 1031, 970, 699, 519, 483 cm⁻¹, Raman: 3049, 2855, 1593, 1172, 1001, 806, 504 cm⁻¹.

Anal. Found: C, 59.7; H, 6.1. Calc. for $C_{32}H_{38}O_3Si_2Sn$ (MW 645.6): C, 59.7; H, 5.9.

3.2. NMR scale synthesis of $[(t-Bu_2 SnO)_2(Ph_2 SiO)_2]$ (2)

1 (64.6 mg, 0.1 mmol) and (t-Bu₂SnO)₃ (24.9 mg, 0.1 mmol) in 300 μ l CDCl₃ were heated to 60°C for 5 h to give a clear solution. Both ¹¹⁹Sn and ²⁹Si NMR spectroscopy shows formation of **2** in 95% yield. In addition there are also traces of the starting compounds left as shown by ¹¹⁹Sn signals at -83.6 ((t-Bu2SnO)3) and -120.3 ppm (1).[33]

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References

- [1] H. Schmidbaur, Angew. Chem. 77 (1965) 206.
- [2] F. Schindler, H. Schmidbaur 79, (1967) 697.
- [3] R. Murugavel, A. Voigt, M.G. Walawalkar, H.W. Roesky, Chem. Rev. 96 (1996) 2205, and references cited herein.
- [4] R. Murugavel, V. Chandrasekhar, H.W. Roesky, Acc. Chem. Res. 29 (1996) 183.

- [5] D.A. Foucher, A.J. Lough, I. Manners, Inorg. Chem. 31 (1992) 3034.
- [6] J. Manners, Angew. Chem 108 (1996) 1712.
- [7] B.J. Bridson, M.F. Mahon, K.C. Molloy, P.J. Schofield, J. Organomet. Chem. 336 (1992) 11.
- [8] B.J. Brisdon, M.F. Mahon, K.C. Molloy, P.J. Schofield, J. Organomet. Chem. 465 (1994) 145.
- [9] O. Graalmann, M. Meyer, U. Klingebiel, Z. Anorg. Allg. Chem. 534 (1986) 109.
- [10] S. Schütte, U. Klingebiel, D. Schmidt-Bäse, Z. Naturforsch. 48b (1993) 263.
- [11] I. Abrahams, M. Montevalli, S.A.A. Shah, A.C. Sullivan, J. Organomet. Chem. 492 (1995) 99.
- [12] F. Xin, M.T. Pope, G.J. Long, U. Russo, Inorg. Chem. 35 (1996) 1207.
- [13] A. Voigt, R. Murugavel, H.W. Roesky, Organometallics 15 (1996) 5097.
- [14] M.J. McGeary, R.H. Cayton, K. Folting, J.C. Huffman, K.G. Caulton, Polyhedron 11 (1992) 1369.
- [15] C. Nedez, A. Theolier, F. Lefebvre, A. Choplin, J.M. Basset, J.F. Joly, J. Am. Chem. Soc. 115 (1993) 722.
- [16] C. Nedez, A. Choplin, F. Lefebvre, J.M. Basset, Inorg. Chem 33 (1994) 1099.
- [17] S.M. Atlas, H.F. Mark, Angew. Chem. 72 (1960) 249.
- [18] T. Nagaei, K. Akiike, T. Kageyama, J. Yatabe, O. Moriya, Chem. Lett. (1996) 1049.
- [19] J. Beckmann, K. Jurkschat, D. Schollmeyer, M. Schürmann, XIth International Symposium on Organosilicon Chemistry, Montpellier, September 1–6, 1996, Abstract OA13.
- [20] H. Behbehani, B.J. Brisdon, M.F. Mahon, K.C. Molloy, M. Mazhar, J. Organomet. Chem. 463 (1993) 41.
- [21] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 27 (1994) 435.
- [22] G.M. Sheldrick, SHELXL93, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.
- [23] C. Glidewell, D.C. Liles, Acta Crystallogr. B 34 (1978) 128.
- [24] C. Glidewell, D.C. Liles, J. Organomet. Chem. 212 (1981) 291.
- [25] A.I. Gusev, M.Yu. Antipin, D.S. Yufit, Yu.T. Struchkov, V.D. Sheludyakov, V.I. Zhun, S.D. Vlasenko, Zh. Strukt. Khim. 24 (1983) 178.
- [26] K. Jurkschat, A. Tzschach, J. Meunier-Piret, M. Van Meersche, J. Organomet. Chem. 317 (1986) 145.
- [27] N.G. Nokii, G.N. Zakharova, Yu.T. Struchkov, Zh. Strukt. Khim. 13 (1972) 291.
- [28] B. Wrackmeyer, Ann. Rep. NMR Spectrosc. 16 (1985) 73.
- [29] J. Beckmann, K. Jurkschat, D. Schollmeyer, M. Schürmann, manuscript in preparation.
- [30] T.P. Lockhart, H. Puff, W. Schuh, H. Reuter, T.N. Mitchell, J. Organomet. Chem. 366 (1989) 61.
- [31] S.A. Kandil, A.L. Allred, J. Chem. Soc. (1970) 2987.
- [32] B. Gödert, Thesis, Friedrich Wilhelms University Bonn, 1979.
- [33] G.M. Sheldrick, SHELXTL-PLUS, Release 3.4 for Nicolet R3m/V crystallographic system, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Nicolet Instrument Corporation, Madison, WI, USA, 1987.